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Highlight of Career Journey

• BS in EE @ SNU, MS & PhD in EE @ Stanford University
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– advised by Prof. Stephen P. Boyd

• Principal Engineer @ Samsung Semiconductor, Inc.
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• Co-founder & CTO & Head of Global R&D & Chief Applied Scientist & Senior Fellow
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Definition & relation with other technologies

• AI

– is technology doing tasks requiring human intelligence, such as learning, problem-

solving, decision-making & language understanding

– encompasses range of technologies, methodologies, applications & products

• AI, ML, DL, statistics & expert system1 [HGH+22]

statistics

AI
ML

DL

expert

systems

1ML: machine learning & DL: deep learning
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History
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GPU for DL

AlphaGo Transformer
GPT & BERT & AlphaFold 1

AlphaFold 2DALL-E
DALL-E 2

ChatGPT & DALL-E 3
GPT-4o & Claude Sonnet & AlphaFold 3Optimus & Figure 02

2012 - AlexNet won ImageNet Competition
(ILSVRC) - widespread attention on DL

2006 - DL Learning gained traction deep belief
networked introduced by Geoffrey Hinton

1997 - IBM’s Deep Blue defeated Garry
Kasparov, (then) the world chess champion

1956 - “Artificial Intelligence” coined by John
McCarthy

1950 - Turing Test introduced by Alan Turing in
“Computing Machinery & Intelligence”
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Deep learning revolution

• 2012 – 2015 - DL revolution2

– CNNs demonstrated exceptional performance in image recognition, e.g., AlexNet’s

victory in ImageNet competition

– widespread adoption of DL learning in CV transforming industries

• 2016 - AlphaGo defeats human Go champion

– DeepMind’s AlphaGo defeated world champion in Go, extremely complex game

believed to be beyond AI’s reach

– significant milestone in RL - AI’s potential in solving complex & strategic problems

2CV: computer vision, NN: neural network, CNN: convolutional NN, RL: reinforcement learning

The AI Architecture Decoded - Artificial Intelligence - Significant AI Achievements - 2014 – 2024 10

https://www.linkedin.com/pulse/what-happened-2012-marked-historical-breakthrough-ai-stavros-pavlidis-tc2oe/
https://www.linkedin.com/pulse/what-happened-2012-marked-historical-breakthrough-ai-stavros-pavlidis-tc2oe/


Sunghee Yun May 02, 2025

Transformer changes everything

• 2017 – 2018 - Transformers & NLP breakthroughs3

– Transformer (e.g., BERT & GPT) revolutionized NLP

– major advancements in, e.g., machine translation & chatbots

• 2020 - AI in healthcare – AlphaFold & beyond

– DeepMind’s AlphaFold solves 50-year-old protein folding problem predicting 3D

protein structures with remarkable accuracy

– accelerates drug discovery and personalized medicine - offering new insights into

diseases and potential treatments

3NLP: natural language processing, GPT: generative pre-trained transformer
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Lots of breakthroughs in AI technology and applications in 2024

• proliferation of advanced AI models

– GPT-4o, Claude Sonnet, Llama 3, Sora

– transforming industries such as content creation, customer service, education, etc.

• breakthroughs in specialized AI applications

– Figure 02, Optimus, AlphaFold 3

– driving unprecedented advancements in automation, drug discovery, scientific

understanding - profoundly affecting healthcare, manufacturing, scientific research
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Transformative impact of AI - reshaping industries, work & society

• accelerating human-AI collaboration

– not only reshaping industries but altering how humans interact with technology

– AI’s role as collaborator and augmentor redefines productivity, creativity, the way we

address global challenges, e.g., sustainability & healthcare

• AI-driven automation transforms workforce dynamics - creating new opportunities while

challenging traditional job roles

• ethical AI considerations becoming central not only to business strategy, but to society

as a whole - influencing regulations, corporate responsibility & public trust
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Where are we in AI today?

• sunrise phase - currently experiencing dawn of AI era with significant advancements and

increasing adoption across various industries

• early adoption - in early stages of AI lifecycle with widespread adoption and innovation

across sectors marking significant shift in technology’s role in society

% US technology adoption
100%

75%

50%

25%

1990 1995 2000 2005 2010 2015 2020 2025

internet smart phones AI
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Explosion of AI ecosystems - ChatGPT & NVIDIA

• took only 5 months for ChatGPT users to reach 35M

• NVDIA 2023 Q2 earning exceeds market expectation by big margin - $7B vs $13.5B

– surprisingly, 101% year-to-year growth

– even more surprisingly gross margin was 71.2% - up from 43.5% in previous year4

12/22 03/23 06/23

0M

10M

20M

30M

40M

GPT-3.5 Released

GPT-4 Released

ChatGPT weekly unique visits

street estimates actual earnings

$7B

$11B

street
estimates
actual
earnings

NVDA 2023-2Q earning

4source - Bloomberg
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Explosion of AI ecosystems - AI stock market

• AI investment surge in 2023 - portfolio performance soars by 60%

– AI-focused stocks significantly outpaced traditional market indices

• over 8,000 new AI applications developed in last 3 years

– applications span from healthcare and finance to manufacturing and entertainment

12/22 3/23 6/23 9/23 12/23

120

140

160

+60%

AI basket performance - 2023

2021 2022 2023 2024
0

3000

6000

9000

8K+

new AI applications over time
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AI’s transformative impact - adoption speed & economic potential

• adoption - has been twice as fast with platform shifts suggesting

– increasing demand and readiness for new technology improved user experience &

accessibility

• AI’s potential to drive economy for years to come

– 35% improvement in productivity driven by introduction of PCs and internet

– greater gains expected with AI proliferation

PC internet mobile genAI

5

10

15

20

20

12
6

?

# years to reach 50%
user penetration in US

1996 2000 2008 2019 today future

3

6

7.8
6.4

5.1 5.3 5.1

<3 ?

# employees per $1M of revenue
(inflation adjusted - S&P 500 companeis)
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AI getting more & more faster

• steep upward slopes of AI capabilities highlight accelerating pace of AI development

– period of exponential growth with AI potentially mastering new skills and surpassing

human capabilities at ever-increasing rate

• closing gap to human parity - some capabilities approaching or arguably reached human

parity, while others having still way to go

– achieving truly human-like capabilities in broad range remains a challenge

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

20%

40%

60%

80%

100%
Human parity

handwriting recognition

speech recognition

image recognition

reading comprehension common sense completion

language understanding

high school & college subjects

code generation
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Massive investment in AI

• explosive growth - cumulative funding skyrocketed reaching staggering $28.2B
• OpenAI - significant fundraising (=$10B) fueled rapid growth

• valuation surge - substantial valuations even before public products for stella companies

• fierce competition for capital among AI startups driving innovation & accelerating

development

• massive investment indicates strong belief in & optimistic outlook for potential of AI to

revolutionize industries & drive economic growth

2020 2021 2022 2023 2024

$10B

$20B

$30B

OpenAI raised $10B →

$28.2B

cumulative funding in private
AI companies since 2020

ANTHROP\C
series B

ADEPT
series A

Inflection
series B

imbue
series B

1

2

3

4
$4.0B

$1.2B $1.0B $1.0B

valuation before public product launch
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Technology hype cycle

time

visibility

innovation Trigger

peak of Inflated expectations

Trough of disillusionment

slope of Enlightenment

Plateau of productivity

• innovation trigger - technology breakthrough kicks things off

• peak of inflated expectations - early publicity induces many successes followed by even more

• trough of disillusionment - expectations wane as technology producers shake out or fail

• slope of enlightenment - benefit enterprise, technology better understood, more enterprises fund pilots
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Fiber vs cloud infrastructure

• fiber infrastructure - 1990s

– Telco Co’s raised $1.6T of equity & $600B
of debt

– bandwidth costs decreased 90% within 4

years

– companies - Covage, NothStart, Telligent,

Electric Lightwave, 360 networks,

Nextlink, Broadwind, UUNET, NFS

Communications, Global Crossing, Level

3 Communications

– became public good

• cloud infrastructure - 2010s

– entirely new computing paradigm

– mostly public companeis with

data centers

– big 4 hyperscalers generate $150B
+ annual revenue
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Yes & No

characteristics of hype cycles speaker’s views

value accrual misaligned with

investment

• OpenAI still operating at a loss; business model

still not clear

• gradual value creation across broad range of

industries and technologies (e.g., CV, LLMs,

RL) unlike fiber optic bubble in 1990s

overestimating timeline &

capabilities of technology

• self-driving cars delayed for over 15 years, with

limited hope for achieving level 5 autonomy

• AI, however, has proven useful within a shorter

5-year span, with enterprises eagerly adopting

lack of widespread utility due

to technology maturity

• AI already providing significant utility across

various domains

• vs quantum computing remains promising in

theory but lacks widespread practical utility
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Multimodal learning

• understand information from multiple modalities, e.g., text, images, audio, video

• representation learning methods

– combine multiple representations or learn multimodal representations simultaneously

• applications

– images from text prompt, videos with narration, musics with lyrics

• collaboration among different modalities

– understand image world (open system) using language (closed system)
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Implications of success of LLMs

• many researchers change gears towards LLM

– from computer vision (CV), speach, music, video, even reinforcement learning

• LLM is not only about NLP . . . humans have . . .

- evolved to optimize natural language structures for eons

- handed down knowledge using this natural languages for thousands of years

– internal structure (or equivalently, representation) of natural languages optimized via

thousands of generation by evolution

• LLM connects non-linguistic world (open system) via natural languages (closed system)
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Multimodal AI (mmAI) - definition & history

• mmAI - systems processing & integrating data from multiple sources & modalities, to

generate unified response / decision

• 1990s – 2000s - early systems - initial research combining basic text & image data

• 2010s - CNNs & RNNs enabling more sophisticated handling of multimodality

• 2020s - modern multimodal models - Transformer-based architectures handling complex

multi-source data at highly advanced level

• mmAI mimics human cognitive ability to interpret and integrate information from

various sources, leading to holistic decision-making
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mmAI Technology

• core components

– data preprocessing - images, text, audio & video

– architectures - unified Transformer-based (e.g., ViT) & cross-attention mechanisms

/ hybrid architectures (e.g., CNNs + LLMs)

– integration layers - fusion methods for combining data representations from different

modalities

• technical challenges

– data alignment - accurate alignment of multimodal data

– computational demand - high-resource requirements for training and inferencing

– diverse data quality - manage variations in data quality across modalities

• advancements

– multimodal embeddings - shared feature spaces interaction between modalities

– self-supervised learning - leverage unlabeled data to learn representations across

modalities
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AI agents powered by multimodal LLMs

• foundation

– integrate multimodal AI capabilities for enhanced interaction & decision-making

• components

– perceive environment through multiple modalities (visual, audio, text), process using

LLM technology, generate contextual responses & take actions

• capabilities

– understand complex environments, reason across modalities, engage in natural

interactions, adapt behavior based on context & feedback
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AI agents - Present & Future

• emerging applications

– scientific research - agents analyzing & running experiments & generating hypotheses

– creative collaboration - AI partners in design & art combining multiple mediums

– environmental monitoring - processing satellite sensor data for climate analysis

– healthcare - enhanced diagnostic combining imaging, e.g., MRI, with patient history

– customer experience - virtual assistants understanding spoken language & visual cues

– autonomous vehicles - integration of visual, radar & audio data

• future

– ubiquitous AI agents - seamless integration into everyday devices

– highly tailored personalized experience - in education, entertainment & healthcare
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Landscape of AI hardware industry

• global AI hardware market valued at $66.96B in 2024, projected to grow significantly

• major companies - Nvidia, Intel, AMD, Qualcomm, and IBM w/ Nvidia holding

substantial market share
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• North America leading market - high R&D investments & key industry players

• Asia Pacific rapidly expanding - strong semiconductor industries in South Korea, China

& Japan

• demand for advanced processors such as GPUs, TPUs & AI accelerators rising due to

complexity of AI algorithms & high computational power
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Predictions for future of AI hardware market

• AI hardware market expected to reach $382B by 2032 - significant growth in data center

AI chips

• integration of AI w/ 5G & increased use of AI in edge computing anticipated to drive

future demand

• AI hardware becoming crucial in sectors such as autonomous vehicles, robotics &

medical devices

• need to address challenges such as heat and power management along with technical

complexities
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Technical challenges of GPUs & AI accelerators

• facing challenges in scaling to handle increasingly large AI models and datasets -

traditional architectures struggling w/ massive parallel processing demands of modern

AI applications

• AI applications require extensive memory bandwidth often leading to bottlenecks -

efficient memory management is crucial

• AI accelerators consume significant power - high operational costs and environmental

concerns for both cloud-based & edge AI applications
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Potential solutions for overcoming challenges

• development of AI-specific architectures such as tensor cores and custom ASICs to

improve efficiency and performance - novel architectures like FPGAs for specific AI

tasks, e.g., for RAG & vectorDB

• implementing software optimizations to enhance hardware usability and performance -

use of compilers and frameworks that maximize efficiency of existing hardware

• encouraging market competition to drive innovation and reduce monopolistic control -

exploring alternative hardware solutions and improving energy efficiency standards
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Big tech’s in-house chip development

• shift towards in-house AI hardware - major tech companies increasingly developing their

own AI chips - move to enhance AI capabilities and reduce dependence

• collaboration with specialized partners - partnering with specialized firms for

manufacturing and technology blending in-house expertise with external innovation

Microsoft Google Amazon Meta

Chip Maia 100 TPU v5e Inferentia2 MTIA v1

Launch Date November, 2023 August, 2023 Early 2023 2025

IP ARM ARM ARM RISC-V

Process Technology TSMC 5nm TSMC 5nm TSMC 7nm TSMC 7nm

Transistor Count 105 billion - - -

INT8 - 393 TOPS - 102.4 TOPS

FP16 - - - 51.2 TFLOPS

BF16 - 197 TFLOPS - -

Memory - - - LPDDR5

TDP - - - 25W

Packaging Technology CoWoS CoWoS CoWoS-S 2D

Collaborating Partners Global Unichip Corp. Broadcom Alchip Technologies Andes Technology

Application Training/Inference Inference Inference Training/Inference

LLM GPT-3.5, GPT-4 BERT, PaLM, LaMDA Titan FM Llama, Llama2
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AMD - Nvidia’s new competitor

• key points

– AMD launched new AI accelerator chip, Instinct MI300X, on Dec 6, 2023

– CDNA 3 architecture, mix of 5nm and 6nm IPs, delivering 153B transistors

– outperforms Nvidia’s H100 TensorRT-LLM by 1.6X higher memory bandwidth and

1.3X FP16 TFLOPS

– up to 40% faster vs Nvidia’s Llama-2 70B model in 8x8 server configurations

• market impact

– significant challenge to Nvidia’s dominance in AI accelerator market

– performance gains over Nvidia’s offerings could drive customer adoption and market

share for AMD

• future prediction

– AMD stocks soared since launch indicating investor confidence in their competitiveness

– Lisa Su, AMD’s CEO, categorized Instinct MI300X as “next big thing” in tech

industry

– potential risks include need to manage ROCm vs CUDA software ecosystem & ensure

rapid customer adoption and production coverage
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AI accelerator startups

• innovative architectures - startups like Groq, SambaNova & Graphcore leading with

novel architectures designed to accelerate AI workloads

– Groq - tensor streaming processor (TSP) offering ultra-low latency & high throughput,

high-performance AI inference chips enhancing speed & efficiency

– SambaNova - reconfigurable dataflow architecture optimizing for various AI workloads

– Graphcore - intelligence processing unit (IPU) tailored for graph-based computation

excelling in sparse data processing

– Cerebras Systems - develop wafer scale engine (WSE), largest chip built for AI

workloads, unmatched computational power revolutionizing AI hardware capabilities

– Hailo - specialize for edge devices optimizing AI processes for real-time applications,

raised $120M emphasizing potential to disrupt traditional AI chip markets
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Technological competitiveness

• energy efficiency

– energy-efficient designs crucial for scalability in data centers and edge devices

– startups developing solutions significantly reducing power consumption without

compromising performance

• customization & flexibility

– AI accelerators from startups often offer greater customization options for specific AI

tasks compared to traditional GPUs

– flexibility in hardware allows for tailored solutions that can outperform general-purpose

accelerators in certain applications

• software integration

– robust software ecosystems critical - startups investing in developing software stacks

that optimize performance for their hardware

– compatibility with existing AI frameworks is competitive advantage, e.g., TensorFlow

& PyTorch
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Industry and market influence

• disruption of traditional players

– challenging dominance of established players like NVIDIA & Intel

– unique architectures providing specialized solutions traditional GPUs and CPUs

cannot efficiently handle

• driving down costs

– offering competitive alternatives pushing down cost of AI computation

– could lead to democratization of AI w/ more companies affording high-performance

AI capabilities
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• accelerating AI innovation

– contributing to rapid innovation providing hardware that can handle emerging AI

models & workloads

– adaptability and specialization enable advancements in AI research & faster

development cycles

• strategic partnerships & acquisitions

– big techs increasingly forming strategic partnerships or acquiring startups to stay

competitive

– collaborations can speed up integration of advanced AI hardware into mainstream

products
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• market growth & opportunities

– AI accelerator market expected to grow significantly driven by demand in data

centers, edge computing & autonomous systems

– startups well-positioned to capture significant share of growing market particularly in

niche applications

• future outlook

– dependency on Asia for fabrication might lead to strategic shifts in global tech

policies and investments in local manufacturing

– increasing demand for efficient AI processing on edge devices and in data center.
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Hard-to-predict AI hardware markets

• US

– birthplace for modern semiconductor chips driving PC market, internet, multi-media,

mobile phones, and AI . . .

- Intel, Texas Instrument (TI), Global Foundry

– traditionally strong with design houses - NVIDIA, AMD, Broadcom, Apple, . . .

– threatened experiencing global chip shortage & vulnerable supply chain via COVID

– national security concerns & economic competitiveness

• China

– strong fast followers - SMIC5, Huawei, Hua Hong Semiconductor (foundry)

• South Korea

– best memory chip makers - Samsung, SK hynix

– struggling with LSI and foundry business

5SMIC - Semiconductor Manufacturing International Corporation
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Reshoring semiconductor manufacturing industry

• trade & semiconductor WAR between US & China

– export controls on advanced chips and equipment

• CHIPS & Science Act (Aug, 2022)

– $52B in subsidies for domestic production, 25%

investment tax credit for chip plants

– (coerce) world-best semiconductor manufacturers

build factories in US with support

- GlobalFoundries - $1.5B @ Feb-2024

- Intel - $8.5B @ Apr-2024 - Ohio - two fabs

expandable to $100B
- Samsung - $6.4B @ Apr-2024 - Talor, Texas

- TSMC - $6.6B @ Apr-2024 - Phoenix, Arizona

- two foundry fabs (3nm & 4nm)
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Turmoils in global semiconductor business

• global context

– EU Chips Act - =C43B to boost European chip production

– Japan & South Korea - significant investments in domestic capacity

• industry dynamics

– Intel’s foundry ambitions - targeting 50% global market share by 2030

– TSMC expanding global footprint (US, Japan, possibly Germany)

• future outlook

– projected shift in global semiconductor manufacturing landscape

– increased geographical diversification of chip production
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Export controls on US chip technology to China

• goal - limit China’s access to advanced semiconductor tech to
maintain US strategic advantage

• impacts on

– China - advanced chips and equipment not allowed, domestic
innovation increased

– US - short-term - US lose market share and revenue in China

– US - long-term - potential decline in US global competitiveness

• Chinese response - circumvent controls and adapt supply chains

• conclusion

– US-China chip rivalry transforms global supply chains with deep
implications for security & industry

– US success hinges on better coordination and policy analysis

- reference - Balancing the Ledger - Center for Strategic &
International Studies (CSIS)
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China strikes back on US sanction

• Huawei’s launch of Mate 60 Pro smartphone

– these domestically produced chips represent major breakthrough against US

sanctions

– its success with advanced 7nm Kirin 9000S chip demonstrates significant

progress in China’s self-reliance in high-tech manufacturing - narrowing the

technological gap with global leaders

• Huawei case highlights potential failure of US sanctions potentially leading to

more aggressive US measures

– US export controls on China’s semiconductor industry are effective in the

short term but insufficient to halt China’s progress especially in legacy chip

manufacturing

– to maintain technological edge, US must balance further restrictions with

supporting its semiconductor industry to avoid overreliance on export

controls
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Chinese semiconductor companies

• Chinese major semiconductor companies

– SMIC - China’s largest chip foundry, advancing 7nm technology

– HiSilicon - Huawei’s chip design arm, crucial for the Kirin processors

– YMTC - leader in 3D NAND memory chip production

– Huahong Group, CXMT, SMEE, GigaDevice, UniIC Semiconductors, ASMC, etc.

• SMIC shows significant progress in producing 7nm chips & YMTC leads memory chip

manufacturer - both face challenges from US export controls

• industry faces internal challenges, e.g., corruption & misallocation of resources

• but remains crucial to China’s goal of technological self-reliance
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History of language models

• bag of words - first introduced – 1954

• word embedding – 1980

• RNN based models - conceptualized by David Rumelhart – 1986

• LSTM (based on RNN) – 1997

• 380M-sized seq2seq model using LSTMs proposed – 2014

• 130M-sized seq2seq model using gated recurrent units (GRUs) – 2014

• Transformer - Attention is All You Need - A. Vaswani et al. @ Google – 2017

– 100M-sized encoder-decoder multi-head attention model for machine translation

– non-recurrent architecture, handle arbitrarily long dependencies

– parallelizable, simple (linear-mapping-based) attention model
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Recent advances in speech & language processing

2012 2014 2016 2018 2020 2022 2024

RNN-
Transducer

Word2Vec

RNN
ED

seq2seq -
DOS

LAS

Wavenet

Tacotron

Conformer-
Transducer

Wav2Vec
2.0

attention-
ED

Transformer

BERT

GPT

Google
T5

GPT-3

Instruct
GPT

GPT
-4

Speech
GPT

GPT
-4o

- LAS: listen, attend, and spell, ED: encoder-decoder, DOS: decoder-only structure
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Types of language models

• many of language models have common requirements - language representation learning

• can be learned via pre-tranining high performing model and fine-tuning/transfer

learning/domain adaptation

• this high performing model learning essential language representation is (lanauge)

foundation model

– actually, same for other types of learning, e.g., CV

voice recognition

voice synthesis

NL generation

translation

Q&A

summarization

topic model

NLU

spelling correction

topic model

action planning
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NLP market size

• global NLP market size estimated at USD
16.08B in 2022, is expected to hit USD
413.11B by 2032 - CAGR of 38.4%

• in 2022

– north america NLP market size valued at
USD 8.2B

– high tech and telecom segment accounted
revenue share of over 23.1%

– healthcare segment held a 10% market
share

– (by component) solution segment hit 76%
revenue share

– (deployment mode) on-premise segment
generated 56% revenue share

– (organizational size) large-scale segment
contributed highest market share

- source - Precedence Research
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Sequence-to-sequence (seq2seq) model

• seq2seq - take sequences as inputs and spit out sequences

• encoder-decoder architecture

encoderinput sequence

she is beautiful

decoder output sequence
ella es hermosa

h

– encoder & decoder can be RNN-type models

– h ∈ Rn - hidden state - fixed length vector

• (try to) condense and store information of input sequence (losslessly) in (fixed-length)

hidden states

– finite hidden state - not flexible enough, i.e., cannot handle arbitrarily large

information

– memory loss for long sequences

- LSTM was promising fix, but with (inevitable) limits
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RNN-type encoder-decoder architecture

• components

– embedding layer - convert input tokens to

vector representations

– RNN layers - process sequential information

– unembedding (unemb) layer - convert vectors

back to vocabulary space

– softmax - produce probability distribution over

vocabulary

• RNN can be basic RNN, LSTM, GRU, other

specialized architecture

RNN

embed

RNN

embed

RNN

embed

RNN

embed

RNN

embed

h1

x1

h2

x2

h3

x3

h4

x4

h5

x5

embed

RNN

unemb

softmax

embed

RNN

unemb

softmax

embed

RNN

unemb

softmax

embed

RNN

unemb

softmax

ŷ1 ŷ2 ŷ3 ŷ4

encoder

decoder
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Shared encoder-decoder model

• single neural network structure can handle both encoding & decoding tasks

– efficient architecture reducing model complexity

– allow for better parameter sharing across tasks

• widely used in modern LLMs to process & generate text sequences

– applications - machine translation, text summarization, question answering

• advantages

– efficient use of parameters, versatile for multiple NLP tasks

input sequence

she is beautiful

shared

encoder-decoder
output sequence
ella es hermosa
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LLM

• LLM

– type of AI aimed for NLP trained on massive corpus of texts
& programming code

– allow learn statistical relationships between words & phrases,
i.e., conditional probabilities

– amazing performance shocked everyone - unreasonable
effectiveness of data (Halevry et al., 2009)

• applications

– conversational AI agent / virtual assistant

– machine translation / text summarization / content creation
/ sentiment analysis / question answering

– code generation

– market research / legal service / insurance policy / triange
hiring candidates

+ virtually infinite # of applications
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LLMs

• Foundation Models

– GPT-x/Chat-GPT - OpenAI, Llama-x - Meta,
PaLM-x (Bard) - Google

• # parameters

– generative pre-trained transfomer (GPT) - GPT-
1: 117M, GPT-2: 1.5B, GPT-3: 175B, GPT-4:
100T, GPT-4o: 200B

– large language model Meta AI (Llama) - Llama1:
65B, Llama2: 70B, Llama3: 70B

– scaling language modeling with pathways (PaLM)
- 540B

• burns lots of cash on GPUs!

• applicable to many NLP & genAI applications
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LLM building blocks

• data - trained on massive datasets of text & code

– quality & size critical on performance

• architecture - GPT/Llama/Mistral

– can make huge difference

• training - self-supervised/supervised learning

• inference - generates outputs

– in-context learning, prompt engineering

goal and scope of LLM project

EDA & model selection

train

model refinement

in-context learning (prompt engineering)

retrieval-augmented generation (RAG) - vector DB

(multimodal) downstream apps
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LLM architectural secret (or known) sauce

Transformer - simple parallelizable attention mechanism

A. Vaswani, et al. Attention is All You Need, 2017
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Transformer architecture

• encoding-decoding architecture

– input embedding space → multi-head & mult-layer
representation space → output embedding space

• additive positional encoding - information regarding order of
words @ input embedding

• multi-layer and multi-head attention followed by addition /
normalization & feed forward (FF) layers

• (relatively simple) attentions

– single-head (scaled dot-product) / multi-head attention
– self attention / encoder-decoder attention
– masked attention

• benefits

– evaluate dependencies between arbitrarily distant words
– has recurrent nature w/o recurrent architecture →

parallelizable → fast w/ additional cost in computation
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Single-head scaled dot-product attention

- values/keys/queries denote value/key/query vectors, dk & dv are lengths of keys/queries & vectors

- we use standard notions for matrices and vectors - not transposed version that (almost) all ML scientists

(wrongly) use

• output: weighted-average of values where weights are attentions among tokens

• assume n queries and m key-value pairs

Q ∈ Rdk×n
, K ∈ Rdk×m

, V ∈ Rdv×m

• attention! outputs n values (since we have n queries)

Attention(Q,K, V ) = V softmax
(
K

T
Q/

√
dk

)
∈ Rdv×n

• much simpler attention mechanism than previous work

– attention weights were output of complicated non-linear NN
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Single-head - close look at equations

• focus on ith query, qi ∈ Rdk, Q =
[

− qi −
]
∈ Rdk×n

• assume m keys and m values, k1, . . . , km ∈ Rdk & v1, . . . , vm ∈ Rdv

K =
[

k1 · · · km

]
∈ Rdk×m

, V =
[

v1 · · · vm

]
∈ Rdv×m

• then

K
T
Q/

√
dk =

 ...

− kT
j qi/

√
dk −

...


e.g., dependency between ith output token and jth input token is

aij = exp
(
k
T
j qi/

√
dk

)
/

m∑
j=1

exp
(
k
T
j qi/

√
dk

)
• value obtained by ith query, qi in Attention(Q,K, V )

ai,1v1 + · · · + ai,mvm
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Multi-head attention

• evaluate h single-head attentions (in parallel)

• de: dimension for embeddings

• embeddings

X ∈ Rde×m
, Y ∈ Rde×m

, Z ∈ Rde×n

e.g., n: input sequence length & m: output sequence
length in machine translation

• h key/query/value weight matrices: WK
i ,W

Q
i ∈ Rdk×de,

WV
i ∈ Rdv×de (i = 1, . . . , h)

• linear output layers: WO ∈ Rde×hdv

• multi-head attention!

W
O

 A1
...

Ah

 ∈ Rde×n
,

Ai = Attention(W
Q
i Z,W

K
i Y,W

V
i X) ∈ Rdv×n

single attention

WV
i WK

i W
Q
i

X Y Z

concat

WO
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Self attention

• m = n

• encoder

– keys & values & queries (K,V,Q) come from same place
(from previous layer)

– every token attends to every other token in input sequence

• decoder

– keys & values & queries (K,V,Q) come from same place
(from previous layer)

– every token attends to other tokens up to that position

– prevent leftward information flow to right to preserve
causality

– assign −∞ for illegal connections in softmax (masking)
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Encoder-decoder attention

• m: length of input sequence

• n: length of output sequence

• n queries (Q) come from previous decoder layer

• m keys / m values (K,V ) come from output of encoder

• every token in output sequence attends to every token in input
sequence
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Visualization of self attentions

example sentence

“It is in this spirit that a majority of American governments have
passed new laws since 2009 making the registration or voting
process more difficult.”

• self attention of encoder (of a layer)

– right figure

- show dependencies between “making” and other words

- different columns of colors represent different heads

– “making” has strong dependency to “2009”, “more”, and
“difficult”
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Visualization of multi-head self attentions

• self attentions of encoder for two heads (of a
layer)

– different heads represent different structures
→ advantages of multiple heads

– multiple heads work together to colletively
yield good results

– dependencies not have absolute meanings
(like embeddings in collaborative filtering)

– randomness in resulting dependencies exists
due to stochastic nature of ML training
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Visualization of encoder-decoder attentions

• machine translation: English → French

– input sentence: “The agreement on the
European Economic Area was signed in
August 1992.”

– output sentence: “L’ accord sur la zone
économique européenne a été signé en août
1992.”

• encoder-decoder attention reveals relevance
between

– European ↔ européenne

– Economic ↔ européconomique

– Area ↔ zone
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Model complexity

• computational complexity

– n: sequence length, d: embedding dimension

– complexity per layer - self-attention: O(n2d), recurrent: O(1)

– sequential operations - self-attention: O(1), recurrent: O(n)

– maximum path length - self-attention: O(1), recurrent: O(n)

• massive parallel processing, long context windows

−→ makes NVidia more competitive, hence profitable!

−→ makes SK Hynix prevail HBM market!
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Bidirectional encoder representations from transformers (BERT)

• Bidirectional Encoder Representations from Transformers [DCLT19]

• pre-train deep bidirectional representations from unlabeled text

• fine-tunable for multiple purposes

poistional embeddings

segment embeddings

token embeddings

input

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

EA EA EA EA EA EA EB EB EB EB

E[cls] Emy Edog Eis Ecute E[sep] Eshe ElikesEplayingE[sep]

[cls] my dog is cute [sep] she likes playing [sep]

+ + + + + + + + + +

+ + + + + + + + + +
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Multimodal learning

• understand information from multiple modalities, e.g.,
text, images, audio, and video

• representation learning

– language representation + image / video / text /
audio representation

– learn multimodal representations together

• outputs

– captions for images, videos with narration, musics with
lyrics

• collaboration among different modalities

– understand image world (open system) using language
(closed system)
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Implications of success of LLMs

• (very) many researchers change gears towards LLM

– from computer vision (CV), speach, music, video, even reinforcement learning

• LLM is not (only) about languages . . .

– humans have . . .

- evolved and optimized (natural) language structures for eons

- handed down knowledge using natural languages for thousands of years

– natural language optimized (in human brains) through thousands of generation by

evolution

– can connect non-linguistic world (open system) using language structures (closed

system)
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Challenges in LLMs

• hallucination - can give entirely plausible outcome that is false

• data poison attack

• unethical or illegal content generation

• huge resource necessary for both training & inference

• model size - need compact models

• outdated knowledge - can be couple of years old

• lack of reproducibility

• biases - more on this later . . .

do not, though, focus on downsides but on infinite possibilities!

• it evolves like internet / mobile / electricity

• only “tip of the iceburg” found & releaved

The AI Architecture Decoded - LLM - Implications & Challenges 88



genAI



Definition of genAI



Sunghee Yun May 02, 2025

Generative AI

• genAI refers to systems capable of producing new (& original) contents based on

patterns learned from training data (representation learning)

– as opposed to discriminative models for, e.g., classification, prediction & regression

– here content can be text, images, audio, video, etc. - what about smell & taste?

• genAI model examples

– generative adversarial networks (GANs), variational autoencoders (VAEs), diffusion

models, Transformers

by Midjourney by Grok 2 mini by Generative AI Lab
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Examples of genAI in action

• text generation

– Claude, ChatGPT, Mistral, Perplexity, Gemini, Grok

– conversational agent writing articles, code & even poetry

• image generation

– DALL-E - creates images based on textual descriptions

– Stable Diffusion - uses diffusion process to generate high-quality images from text

prompts (by denoising random noise)

– MidJourney - art and visual designs generated through deep learning

• music generation

– Amper Music - generates unique music compositions

• code generation

– GitHub Copilot - generates code snippets based on natural language prompts
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Birth of AI - early foundations & precursor technologies

• 1950s ∼ 1970s

– Alan Turing - concept of “thinking machine” & Turing test to evaluate machine

intelligence (1950s)

– symbolists (as opposed to connectionists) - early AI focused on symbolic reasoning,

logic & problem-solving - Dartmouth Conference in 1956 by John McCarthy, Marvin

Minsky, Allen Newell & Herbert A. Simon

– precursor technologies - genetic algorithms (GAs), Markov chains & hidden Markov

models (HMMs) - laying foundation for generative processes (1970s ∼)

1950 1960 1970 1980 1990 2000 2010 2020 2030

Turing test
peak of symbolism

expert system
peak of probabilistic models

DL revolution

VAE
GAN

GPT-2
GPT-3

GPT-4o
Mistral 7B

Gemini 1.5 Pro

Claude SonnetPerplexity Ask

Grok-2
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Rule-based systems & probabilistic models

• 1980s ∼ early 2000s

– expert systems (1980s) - AI systems designed to mimic human decision-making in

specific domains

– development of neural networks (NN) w/ backpropagation training multi-layered

networks - setting stage for way more complex generative models

– probabilistic models (including network models, i.e., Bayesian networks) & Markov

models - laying groundwork for data generation & pattern prediction

1950 1960 1970 1980 1990 2000 2010 2020 2030

Turing test
peak of symbolism

expert system
peak of probabilistic models

DL revolution

VAE
GAN

GPT-2
GPT-3

GPT-4o
Mistral 7B

Gemini 1.5 Pro

Claude SonnetPerplexity Ask

Grok-2
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Rise of deep learning & generative models

• 2010s - breakthrough in genAI

– deep learning (DL) revolution - advances in GPU computing and data availability led

to the rapid development of deep neural networks.

– variational autoencoder (VAE) (2013) - by Kingma and Welling - learns mappings

between input and latent spaces

– generative adversarial network (GAN) (2014) - by Ian Goodfellow - game-changer in

generative modeling where two NNs compete each other to create realistic data

- widely used in image generation & creative tasks

1950 1960 1970 1980 1990 2000 2010 2020 2030

Turing test
peak of symbolism

expert system
peak of probabilistic models

DL revolution

VAE
GAN

GPT-2
GPT-3

GPT-4o
Mistral 7B

Gemini 1.5 Pro

Claude SonnetPerplexity Ask

Grok-2
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Transformer models & multimodal AI

• late 2010s ∼ Present

– Transformer architecture (2017) - by Vaswani et al.

- revolutionized NLP, e.g., LLM & various genAI models

– GPT series - generative pre-trained transformer

- GPT-2 (2019) - generating human-like texts - marking leap in language models

- GPT-3 (2020) - 175B params - set new standards for LLM

– multimodal systems - DALL-E & CLIP (2021) - linking text and visual data

– emergence of diffusion models (2020s) - new approach for generating high-quality

images - progressively “denoising” random noise (DALL-E 2 & Stable Diffusion)

1950 1960 1970 1980 1990 2000 2010 2020 2030

Turing test
peak of symbolism

expert system
peak of probabilistic models

DL revolution

VAE
GAN

GPT-2
GPT-3

GPT-4o
Mistral 7B

Gemini 1.5 Pro

Claude SonnetPerplexity Ask

Grok-2
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genAI models

• definition of generative model

Z
gθ(z)−−−→ X

• generate samples in original space, X , from samples in latent space, Z

• gθ is parameterized model e.g., CNN / RNN / Transformer / diffuction-based model

• training

- finding θ that minimizes/maximizes some (statistical) loss/merit function so that

{gθ(z)}z∈Z generates plausiable point in X

• inference

– random samples z to generated target samples x = gθ(z)

– e.g., image, text, voice, music, video
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VAE - early genAI model

• variational auto-encoder (VAE) [KW19]

X
qϕ(z|x)−−−−→ Zo

pθ(x|z)−−−−→ X

• log-likelihood & ELBO - for any qϕ(z|x)

log pθ(x) = E
z∼qϕ(z|x)

log pθ(x) = E
z∼qϕ(z|x)

log
pθ(x, z)

qϕ(z|x)
·
qϕ(z|x)
pθ(z|x)

= L(θ, ϕ; x) + DKL(qϕ(z|x)∥pθ(z|x)) ≥ L(θ, ϕ; x)

• (indirectly) maximize likelihood by maximizing evidence lower bound (ELBO)

L(θ, ϕ; x) = E
z∼qϕ(z|x)

log
pθ(x, z)

qϕ(z|x)

• generative model

pθ(x|z)
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GAN - early genAI model

• generative adversarial networks (GAN) [GPAM+14]

q(z)
z

g(θG; z)
xmodel

f(θD; x) true / false

xdata
p(x)

– value function

V (θD, θG) = E
x∼p(x)

log f(θD; x)) + E
z∼q(z)

log(1 − f(θD; g(θG; z)))

– modeling via playing min-max game

min
θG

max
θD

V (θD, θG)

– generative model

g(θG; z)

– variants: conditional / cycle / style / Wasserstein GAN
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genAI - LLM

• maximize conditional probability

maximize
θ

d (pθ(xt|xt−1, xt−2, . . .), pdata(xt|xt−1, xt−2, . . .))

where d(·, ·) distance measure between probability distributions

– previous sequence: xt−1, xt−2, . . .

– next token: xt

• pθ represented by (extremely) complicated model

– e.g., containing multi-head & multi-layer Transformer architecture inside

• model parameters, e.g., for Llama2

θ ∈ R70,000,000,000
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Current trend of genAI

• rapid advancement in language models & multimodal AI capabilities

• rise of AI-assisted creativity & productivity tools

• growing adoption across industries

– creative industries - design, entertainment, marketing, software development

– life sciences - healthcare, medical, biotech

• infrastructure & accessibility, e.g., Hugging Face democratizes AI development

• integration with cloud platforms & enterprise-level tools

• increased focus on AI ethics & responsible development
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Industry & business impacts

• how genAI is transforming industries

– creative industries - content creation - advertising, gaming, film

– life science - enhance research, drug discovery & personalized treatments

– finance - automating document generation, risk modeling & fraud detection

– manufacturing & Design - rapid prototyping, 3D modeling & optimization

– business operations - automate routine tasks to boost productivity
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Future perspectives of genAI

• hyper-personalization - highly personalized content for individual users - music, products

& services

• AI ethics & governance - concerns over deepfakes, misinformation & bias

• interdisciplinary synergies - integration with other fields such as quantum computing,

neuroscience & robotics

• human-AI collaboration - augment human creativity rather than replace it

• energy efficiency - have to figure out how to dramatically reduce power consumption
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Selected references & sources

• Chris Miller “Chip War: The Fight for the World’s Most Critical Technology” (2022)

• Daniel Kahneman “Thinking, Fast and Slow” (2011)

• M. Shanahan “Talking About Large Language Models” (2022)

• A.Y. Halevry, P. Norvig, and F. Pereira “Unreasonable Effectiveness of Data” (2009)

• A. Vaswani, et al. “Attention is all you need” @ NeurIPS (2017)

• S. Yin, et. al. “A Survey on Multimodal LLMs” (2023)

• I.J. Goodfellow, ..., Y. Bengio “Generative adversarial networks (GAN)” (2014)

• T. Kuiken “Artificial Intelligence in the Biological Sciences: Uses, Safety, Security, and

Oversight” (2023)

• Stanford Venture Investment Groups

• CEOs & CTOs @ startup companies in Silicon Valley

• VCs on Sand Hill Road - Palo Alto, Menlo Park, Woodside in California, USA
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